Duality in Random Matrix Ensembles for All Β

نویسنده

  • PATRICK DESROSIERS
چکیده

Gaussian and Chiral β-Ensembles, which generalise well known orthogonal (β = 1), unitary (β = 2), and symplectic (β = 4) ensembles of random Hermitian matrices, are considered. Averages are shown to satisfy duality relations like {β,N, n} ⇔ {4/β, n,N} for all β > 0, where N and n respectively denote the number of eigenvalues and products of characteristic polynomials. At the edge of the spectrum, matrix integrals of the Airy (Kontsevich) type are obtained. Consequences on the integral representation of the multiple orthogonal polynomials and the partition function of the formal one-matrix model are also discussed. Proofs rely on the theory of multivariate symmetric polynomials, especially Jack polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A random matrix decimation procedure relating β = 2 / ( r + 1 ) to β = 2 ( r + 1 )

Classical random matrix ensembles with orthogonal symmetry have the property that the joint distribution of every second eigenvalue is equal to that of a classical random matrix ensemble with symplectic symmetry. These results are shown to be the case r = 1 of a family of interrelations between eigenvalue probability density functions for generalizations of the classical random matrix ensembles...

متن کامل

A diffusive matrix model for invariant β-ensembles

We define a new diffusive matrix model converging towards the β-Dyson Brownian motion for all β ∈ [0, 2] that provides an explicit construction of β-ensembles of random matrices that is invariant under the orthogonal/unitary group. We also describe the eigenvector dynamics of the limiting matrix process; we show that when β < 1 and that two eigenvalues collide, the eigenvectors of these two col...

متن کامل

Gap Probabilities in Non-Hermitian Random Matrix Theory

We compute the gap probability that a circle of radius r around the origin contains exactly k complex eigenvalues. Four different ensembles of random matrices are considered: the Ginibre ensembles and their chiral complex counterparts, with both complex (β = 2) or quaternion real (β = 4) matrix elements. For general non-Gaussian weights we give a Fredholm determinant or Pfaffian representation ...

متن کامل

Brownian motion and random matrices

This workshop, sponsored by AIM and NSF, was devoted to β-generalizations of the classical ensembles in random matrix theory. Recent advances have put stochastic methods on center stage, thus explaining the workshop title ‘Brownian motion and random matrices’. One recalls that a viewpoint on classical random matrix theory, generalizing Dyson’s three fold way, is that physically relevant ensembl...

متن کامل

Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models

We study the global spectrum fluctuations for β-Hermite and β-Laguerre ensembles via the tridiagonal matrix models introduced in [11], and prove that the fluctuations describe a Gaussian process on monomials. We extend our results to slightly larger classes of random matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008